

Article

Exploring HyperGraphics –
Interactive Diagramming Capabilities

Article: 2, issue 2, 4 September 2003
Software Version: Delphi 6.0, HyperGraphics 2.220
Written by: Dom Jenkins

39 High Street Tel +44 (0)1225 481100
Weston Fax +44 (0)1225 482100
Bath web http://www.dotsoftware.co.uk
B&NES BA1 4BX email info@dotsoftware.co.uk
ENGLAND Registered No. 3387287

 04/09/03

 2/11

Getting Started

HyperGraphics is a new interactive graphics library ideally suited to engineering applications,
particularly those requiring more dynamic graphics capabilities. It also has a number features that
make it an ideal choice for interactive graphics and diagramming applications. By this I mean
applications such as Microsoft Visio, or a UML designer, which allow a user to manipulate objects
graphically and link them together.

Some of the diagramming features of HyperGraphics include:

1. Plug and Socket components allowing objects to be linked visually
2. Connecting and Connected events allowing code to accept or decline connections and

maintain the links “behind” the diagram
3. In-line editing of text objects
4. Built-in serialisation of all objects and links, allowing easy “cut and paste”, and loading and

saving of files.

Many existing HyperGraphics objects incorporate socket components already, but if not, these
can be added to any object as child components, as we shall see. There are also a number of
versatile Connectors (lines with plug objects):

New connectors can be derived from any of these, and again any number of plug objects can be
added.

With these features in mind we can build a simple example…

Creating a Database Visually

Wouldn’t it be nice to create a database visually? For me, this is definitely preferable to using lots of
dialogs anyway, namely because you can immediately see the tables and how they link together.
So, with this in mind, how about something that allows us to:

• Add tables
• Add fields to the tables
• Set a field to be the primary key
• Set constraints (link primary fields to foreign fields)
• Save the whole lot to a file
• Generate the database (or at least something that could be used to do this!).

To do this, first we need to start a new Delphi project and drop an HGPanel object (from the HG tab
of the component palette) onto a form, setting Align:=alClient. Now add an HGView using the
designer (right click the HGPanel and select “HyperGraphics designer…”). As the view will be the
parent to our diagram, set it to occupy the whole of the client area, i.e. normalised units for position
and size, positioned at (0,0) with size (1,1). Figure 1 shows how your form should look.

 04/09/03

 3/11

Figure 1 HyperGraphics designer
Now we need some visual objects to represent the tables and connectors, and we can derive them
from a table (THGTable) and a right-angled connector (THGRAConnector), respectively.

Multi-line and multi-column tables

The THGTable object supports multi-line and multi-column tables, with each cell being a THGCell
object that positions its child controls and sizes itself to surround them (a bit like the way an HTML
table sizes itself to its contents). We can derive a new component from a THGTable, and use a text
object (THGText) to display the table name.

Displaying the field names is a bit trickier as we want to have an indication that the field is a primary
key. For this we’ll use a picture object with a caption object positioned to its left, as this will draw itself
without any extra coding.
Listing 1 – Creating the table shows the code required to create the table and add fields. Note that
the “perimeter socket” [a special socket that allows plugs to connect anywhere along the perimeter
of its parent, rather than at a specific location] is freed in the constructor. This is because it is
already part of the THGTable, but as we do not need this behaviour, we simply delete the object.
You can also see that we have added two socket (THGSocket) components to the cell, one on
each side of the cell. These will be used with the connector object to set the database constraints.
The object hierarchy is as follows:

THGDatabaseTable
 THGCell
 THGText – used for the table name
 THGCell
 THGSocket – used to connect fields together
 THGSocket
 THGPicture – used to indicate a primary key field

 04/09/03

 4/11

 THGCaption – used for the field name
 THGCell
 …
 …

Now we have created the object, we can add some properties to manipulate the fields, set the
primary key and return the selected field (if there is one). Note that a user can select the child
components of an object by holding down the control key while clicking the parent component. We
can make use of this functionality to let the user select an individual field in a table. This can be
used to provide a different pop-up menu in the main form. To set a field as the primary key we set
the picture object’s ImageObj to a pre-loaded bitmap. See Listing 2 – Setting a primary key.

We must also remember to register our new object with HyperGraphics, as we need to use the
built-in serialisation to save our diagram:

 // Register with HG (only used for serialisation)
 RegisterHGclass('','Database Table', TDatabaseTable);

We must also restore any references to HyperGraphics objects after serialisation, as our
constructor will not be called (because HyperGraphics has already created our table and all its
children from information in the serialisation file). The post serialise event is called after serialisation
has been completed, and this is the place to do it:

procedure TDatabaseTable.PostSerialiseEvent;
begin
 // get references to objects created in the constructor
 FText:=FindObj('Title') as THGText;
end;

Finally we want to stop a connection being made between two sockets on the same field
(remember that each field in the table has two sockets, one on each side). To do this, we can add a
utility method that can be called from the connector when the user is attempting to connect two
fields:

function TDatabaseTable.CanConnect(Socket1, Socket2: THGSocket): boolean;
begin
 // check that both sockets don't belong to the same field
 Result:=not (GetFieldInxFromSocket(Socket1)=GetFieldInxFromSocket(Socket2));
end;

Connecting tables

The THGRAConnector object already has the behaviour we need, but we must also make sure
that it can only connect to a table, and that within that table, the THGRAConnector never
reconnects a field with itself (i.e. connections should only be made between two different fields). To
do this, we override the methods that are called when the user drops a plug on a socket:

function IsValidConnectEvent(id: longint; psocket: THGsocket; cm: HGconnectmode
): boolean; override;
procedure ConnectEvent(id: longint; psocket: THGsocket; cm: HGconnectmode);
override;

The first method is used to control the making or breaking of a connection. If True is returned, the
user is given visual feedback that the plug can be “dropped”, and the connection can be made (and
broken). The second method can be used to store information after the connection has been made
or broken, and we can use it to set the name of the connector when both ends are connected:

procedure TFieldConnector.ConnectEvent(id: Integer; psocket: THGsocket;
 cm: HGconnectmode);
var
 PrimaryTable,ForeignTable: TDatabaseTable;
 PrimaryInx,ForeignInx: integer;

 04/09/03

 5/11

begin
 inherited;
 // reset the name
 GetConnectedTables(PrimaryTable,ForeignTable,PrimaryInx,ForeignInx);
 if Assigned(PrimaryTable) and Assigned(ForeignTable) then
 Name:=ForeignTable.Name+'_'+PrimaryTable.Name;
end;

Main Form

We can start by implementing the opening and saving of files. The serialisation built into
HyperGraphics will write the entire object hierarchy to a buffer, so we will use a TMemoryStream
to write this to a file:

procedure TfrmMainForm.Saveas1Click(Sender: TObject);
var
 msFigure: TMemoryStream;
 iSize: integer;
begin
 if SaveDialog1.Execute then
 begin
 msFigure:=TMemoryStream.Create;
 try
 // write out the view data
 iSize:=FView.SaveAllToBuffer(msFigure.Memory,0);
 msFigure.SetSize(iSize);
 FView.SaveAllToBuffer(msFigure.Memory,iSize);
 msFigure.SaveToFile(SaveDialog1.FileName);
 finally
 msFigure.Free;
 end;
 end;
end;

Loading a file is a bit more complicated as we must replace any existing diagram. This is achieved
by simply destroying the THGView (as it is the parent of the diagram) and replacing it with the
diagram we saved in the file:

procedure TfrmMainForm.Open1Click(Sender: TObject);
var
 msFigure: TMemoryStream;
begin
 if OpenDialog1.Execute then
 begin
 msFigure:=TMemoryStream.Create;
 try
 msFigure.LoadFromFile(OpenDialog1.Filename);
 // display it in the window (view is already in the file)
 FView.Free;
 FView:=HGPanel1.HGWindow.
 RestoreFromBuffer(PByte(msFigure.Memory),msFigure.Size) as THGView;
 finally
 msFigure.Free;
 end;
 HGPanel1.Invalidate; // redraw
 end;
end;

Now we can implement the menu items for adding our table and connector objects. This is fairly trivial as we
can use the AddPositionalObject method and let the user position the object with the mouse:

procedure TfrmMainForm.Addtable1Click(Sender: TObject);
var
 Table: TDatabaseTable;
begin
 Table:=TDatabaseTable.Create(FView);

 04/09/03

 6/11

 if Table.AddPositionalObject=-1 then Table.Free;
end;

Next we would like the user to be able to select items, and the program to track what they have
selected so that pop-up menus can be context sensitive. If we set the HGPanel MouseEditing
property to True, HyperGraphics will control the selection of objects with the mouse. For this
example, the way that HyperGraphics does this is exactly what we want, but we could write our
own mouse events to control the selection ourselves. Next we set event handlers for the
OnObjSelected and OnObjDeSelected events so we can track the user’s selections and
respond correctly to right-click events. Note that the user can select a child of an object (and this is
the way they will select a field in a table), so we search the selected object’s parents to see if they
are a THGDatabaseTable or TFieldConnector:

procedure TfrmMainForm.HGPanel1ObjSelected(Sender: TObject);
var
 Obj: THGDrawingObject;
begin
 FCurrentTable:=nil;
 FCurrentConnector:=nil;
 Obj:=Sender as THGDrawingObject;
 // search parents of selected object as user can select a child of a table
 // or connector
 while Assigned(Obj) do
 begin
 if Obj=FView then
 Break
 else if Obj is TDatabaseTable then
 begin
 FCurrentTable:=TDatabaseTable(Obj);
 Break;
 end
 else if Obj is TFieldConnector then
 begin
 FCurrentConnector:=TFieldConnector(Obj);
 Break;
 end;
 Obj:=Obj.Parent;
 end;
end;

The final (most important) thing to add is the output of the tables, fields and constraints to a text file.
The output is generated from two loops, one for tables and the other for connectors. See Listing 3 –
Output of database structure. The loop for tables simply outputs the table name and all the field
names, with an indicator for primary fields. The second loop must find both tables for each
connector (if it is not connected to two tables, then we are not interested in it) and output the table
name and field name for each. To simplify the code and remove any dependence on the internal
structure of our components, the GetConnectedTables method of the connector is used, which
then uses the GetTableFromSocket and GetFieldInxFromSocket methods from the table.
See Listing 4 – Getting the constraint information. Note that the output is a simple list. Converting it
to SQL is left as an exercise for the reader!

So what does it look like? Figure 2 shows an example database with five tables, and this is the text
file it produces:

Table: Projects
 Primary key ID
Table: Settings
 DefaultProjectID
Table: ProjectUsers
 Primary key ID
 ProjectID
 UserID
Table: Users
 Primary key ID

 04/09/03

 7/11

Table: Sessions
 Primary key ID
 ProjectID
 UserID
Constraint: Settings_Projects
 Primary Projects ID Foreign Settings DefaultProjectID
Constraint: ProjectUsers_Projects
 Primary Projects ID Foreign ProjectUsers UserID
Constraint: Sessions_Projects
 Primary Projects ID Foreign Sessions ProjectID
Constraint: Sessions_Users
 Primary Users ID Foreign Sessions UserID
Constraint: ProjectUsers_Users
 Primary Users ID Foreign ProjectUsers UserID

Figure 2 - Example database diagram

Conclusions

What have we achieved? Well, we've delved into the diagramming functionality of HyperGraphics
and built an application for capturing the structure of a database. We've learnt how to serialise our
objects and how to link them together, and we've also made good use of the functionality built into
HyperGraphics for selecting and drawing objects.

There are plenty of additional features that we could have added using HyperGraphics, such as
multiple-object cut and paste, and object selection using a rubber band box. Yet more features,
such as real-time display of data and creating custom objects, are left to other examples.

Specialist software development does not have to mean writing everything from the ground up. For
skilful developers needing re-usable graphical components that offer real power and flexibility,
HyperGraphics is an essential tool.

Listing 1 – Creating the table

constructor TDatabaseTable.Create(par: THGdrawingobject);

 04/09/03

 8/11

var
 Cell: THGCell;
begin
 inherited Create(par);
 BorderObj.ChildSocket.Free; // don't want the perimeter socket
 // set rows/cols
 Ncols:=1;
 Nrows:=1;
 // add title to row 0
 Cell:=Self.FindCell(0,0);
 Cell.Cellhoralignment:=HG_LEFT;
 FText:=THGText.Create(Cell);
 FText.Name:='Title';
 FText.Font.Style:=[fsBold];
 Roundcorners:=True;
 Borderobj.Fillcolour:=clSilver; // match to primary key bitmap background
 Name:='NewTable';
 // add first field
 AddField('ID');
end;

function TDatabaseTable.AddField(Name: string):integer;
var
 Caption: THGCaption;
 Cell: THGCell;
 Picture: THGPicture;
 Socket: THGSocket;
begin
 // add a cell
 NRows:=NRows+1;
 Cell:=FindCell(NRows-1,0);
 // set cell properties
 Cell.Cellhoralignment:=HG_LEFT;
 // add two sockets, one at each side
 Socket:=THGSocket.CreateSocket(Cell,1,0.5);
 Socket.Movable:=False;
 Socket:=THGSocket.CreateSocket(Cell,3,0.5);
 Socket.Movable:=False;
 // add a picture object for the primary key bitmap
 Picture:=THGPicture.Create(Cell);
 Picture.Ownresources:=False;
 Picture.Imageobj:=Primary; // sets the size of the picture
 Picture.ChangeSizeunits(HG_CM); // recalculate size to cm for printer
 // add a caption to the picture object as it can position itself automatically
 Caption:=THGCaption.Create(Picture);
 Caption.Alignment:=HG_CAPLEFT;
 Caption.Textstring:=Name;
 Result:=NRows-2;
 PrimaryKey[Result]:=False; // default to not a primary key
end;

Listing 2 – Setting a primary key

procedure TDatabaseTable.SetPrimaryKey(Inx: integer;Value: boolean);
begin
 if Value then
 GetPictureFromField(FindField(Inx)).ImageObj:=Primary
 else
 begin
 with FindField(Inx).Parent as THGPicture do ImageObj:=nil;
 end;
end;

initialization
 // bitmap for primary key
 Primary:=THGBitmap.CreateBitmap('Primary.bmp');
 // Register with HG (only used for serialisation)
 RegisterHGclass('','Database Table', TDatabaseTable);

 04/09/03

 9/11

finalization
 Primary.Free;
end.

Listing 3 – Output of database structure

procedure TfrmMainForm.Outputdatabase1Click(Sender: TObject);
var
 slDatabase: TStringList;
 // local procedure
 procedure OutputTable(Table: TDatabaseTable);
 var
 i: integer;
 stTemp: string;
 begin
 slDatabase.Add('Table: '+Table.Name);
 for i:=0 to Table.Fields-1 do
 begin
 if Table.PrimaryKey[i] then
 stTemp:=' Primary key '
 else
 stTemp:=' ';
 slDatabase.Add(stTemp+Table.Field[i]);
 end;
 end;
 // local procedure
 procedure OutputConstraints(Connector: TFieldConnector);
 var
 PrimaryTable,ForeignTable: TDatabaseTable;
 PrimaryInx,ForeignInx: integer;
 begin

Connector.GetConnectedTables(PrimaryTable,ForeignTable,PrimaryInx,ForeignInx);
 if Assigned(PrimaryTable) and Assigned(ForeignTable) then
 begin
 slDatabase.Add('Constraint: '+Connector.Name);
 slDatabase.Add(' Primary '+PrimaryTable.Name+'
'+PrimaryTable.Field[PrimaryInx]+
 ' Foreign '+ForeignTable.Name+' '+ForeignTable.Field[ForeignInx]);
 end;
 end;
var
 Obj: THGDrawingObject;
begin
 // write out database as a text file (could be translated to SQL)
 slDatabase:=TStringList.Create;
 try
 // loop round tables
 Obj:=FView.Child;
 while Assigned(Obj) do
 begin
 // output fields
 if Obj is TDatabaseTable then OutputTable(TDatabaseTable(Obj));
 Obj:=Obj.Next;
 end;
 // loop round tables
 Obj:=FView.Child;
 while Assigned(Obj) do
 begin
 // output constraints
 if Obj is TFieldConnector then OutputConstraints(TFieldConnector(Obj));
 Obj:=Obj.Next;
 end;
 slDatabase.SaveToFile('Database.txt');
 finally
 slDatabase.Free;
 end;
end;

 04/09/03

 10/11

Listing 4 – Getting the constraint information

procedure TFieldConnector.GetConnectedTables(var PrimaryTable,ForeignTable:
TDatabaseTable;
 var PrimaryInx,ForeignInx: integer);
var
 Plug: THGPlug;
begin
 PrimaryTable:=nil;
 ForeignTable:=nil;
 PrimaryInx:=-1;
 ForeignInx:=-1;
 Plug:=ChildPlug;
 if Assigned(Plug.Socketobj) then
 begin
 ForeignTable:=TDatabaseTable.GetTableFromSocket(Plug.Socketobj);
 ForeignInx:=ForeignTable.GetFieldInxFromSocket(Plug.Socketobj);
 end;
 Plug:=GetOtherPlug(Plug);
 if Assigned(Plug.Socketobj) then
 begin
 PrimaryTable:=TDatabaseTable.GetTableFromSocket(Plug.Socketobj);
 PrimaryInx:=PrimaryTable.GetFieldInxFromSocket(Plug.Socketobj);
 end;
end;

function TFieldConnector.GetOtherPlug(Plug: THGPlug):THGPlug;
var
 OtherPlug: THGPlug;
begin
 Result:=nil;
 OtherPlug:=ChildPlug;
 while Assigned(OtherPlug) do
 begin
 if OtherPlug<>Plug then
 begin
 Result:=OtherPlug;
 Break;
 end;
 OtherPlug:=OtherPlug.NextPlug;
 end;
end;

function TDatabaseTable.GetFieldInxFromSocket(Socket: THGSocket): integer;
var
 i: integer;
 Cell: THGCell;
begin
 Result:=-1;
 for i:=0 to Fields-1 do
 begin
 Cell:=GetCellFromField(FindField(i));
 if HasChildSocket(Cell,Socket) then
 begin
 Result:=i;
 Break;
 end;
 end;
end;

class function TDatabaseTable.GetTableFromSocket(Socket: THGSocket):
TDatabaseTable;
begin
 if not (Socket.Parent.Parent is TDatabaseTable) then
 Result:=nil
 else
 Result:=TDatabaseTable(Socket.Parent.Parent);

 04/09/03

 11/11

end;

